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Optimal control under uncertainty

PDE-constrained control objective > J(-): control objective
J(y(u,m)) » A: forward (PDE) operator
where > y: state variable
Ay, m) = f(u) » m: uncertain parameter (field)

v

u: control function

Two main formulations:
1. Deterministic control: One wu for all m

2. Stochastic control: u = u(m) depends on m
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Optimal control under uncertainty
» One control for all m
» May include risk measure F(-)

Deterministic control case

i Em M R ) b -
t {7y m))} + £y, u,m) (e.g., variance or CVaR)
where » Challenges: Integration over
A(y,m) = f(u) high-dimensional m, PDE

forward model
Example Il: Optimal fluid insertion
in subsurface with uncertain
permeability

Example I: Design of magnetic coils
for plasma confinement in fusion

e
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Optimal control under uncertainty

Stochastic/Adjustable control case ~ Example Ill: Optimal placement of
active dampers for uncertain
51(17173 J(y(u,m)) + Q(y,u, m) vibration /earthquake forces

where

Aly,m) = f(u)

» Control u depends on m

» Includes coupling term ()() for
distribution (e.g., Var,,(y) or
joint support term for )

» Challenges: Many coupled PDE

forward problems, dimension of
uncertain parameters
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(Incomplete) literature for PDE-constrained OUU

Schulz & Schillings, Problem formulations and treatment of uncertainties in
aerodynamic design, AIAA J, 2009.

Borzi & von Winckel, A POD framework to determine robust controls in PDE
optimization, Computing and Visualization in Science, 2011.

Gunzburger & Ming, Optimal control of stochastic flow over a backward-facing step
using reduced-order modeling, SISC 2011.

Gunzburger, Lee, & Lee, Error estimates of stochastic optimal Neumann boundary
control problems, SINUM, 2011.

Kunoth & Schwab, Analytic Regularity and GPC Approximation for Control Problems
Constrained by Linear Parametric Elliptic and Parabolic PDEs, SICON, 2013.

Tiesler, Kirby, Xiu, & Preusser, Stochastic collocation for optimal control problems with
stochastic PDE constraints, SICON, 2012.

Kouri, Heinkenschloss, Ridzal, & Van Bloemen Waanders, A trust-region algorithm with
adaptive stochastic collocation for PDE optimization under uncertainty, SISC, 2013.
Chen, Quarteroni, & Rozza, Stochastic optimal Robin boundary control problems of
advection-dominated elliptic equations, SINUM, 2013.

Kouri, A multilevel stochastic collocation algorithm for optimization of PDEs with
uncertain coefficients, JUQ, 2014.

Chen, Quarteroni, & Rozza, Multilevel and weighted reduced basis method for stochastic
optimal control problems constrained by Stokes equations, Num. Math. 2015.

Kouri & Surowiec, Risk-averse PDE-constrained optimization using the conditional
value-at-risk, SIOPT, 2016.
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Example I: Coil optimization for magnetic confinement
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Fusion: Tokamaks and Stellarators
with: A. Giuliani, F. Wechsung, A. Cerfon, M. Landreman; funded by Simons Foundation

(b)

Blanket Plasma Magnetic
field line

Figure: a) A tokamak creates rotational transform (RT) by running current through the
plasma. b) A stellarator creates RT by twisting the magnetic field. [Figure: Xu]

» Tokamak: how do we deal with MHD instabilities triggered by the
current in the plasma?

> Stellarator: how do we design coils to create a field with appropriate
rotational transform and particle confinement?

» W7-X youtube video


https://www.youtube.com/watch?v=u-fbBRAxJNk&ab_channel=ScienceMagazine
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Coil errors — motivation

Problem
In practice, we can not precisely build the coils we designed.

Conclusion
We have to find minima that are robust to small perturbations of the
design.
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National Compact Stellarator Experiment (NCSX)

The assembly tolerances were very tight
and required state of the art use of
metrology systems [...] ~ $50 million
of additional funding was needed [..]
The required tolerances could not be
achieved; As the modules were assem-
bled, parts were found to be in contact,
would sag once installed, and other un-
expected effects made alignment very
difficult.[...] Fixes were worked into the
design, but each one further delayed
the completion and required more fund-
ing.[...] when the goal was not met on
budget, the project was cancelled.

Figure: NCSX Stellarator [Figure:

wiki].
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mmmm Coil
mmmm Perturbed coil

Figure: We model coil errors m with a Gaussian process.
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Now take a function that maps a control u and a random variable m to a
quantity of interest:
(u,m) = f(u,m)
» Deterministic

min f(u,0)
1
» Risk-Neutral
. 08 i
min Epn[f (u, m)] .
» Robust o oo : |
m’l}n mT%Xf(/uﬂ m) g 0.4} : VaRo.05 T
> Risk-Averse, e.g. ol R )
min E[f (u, m)] +~Var[f (u,m)]

0

min VaR,[f(u, m)]
min CVaRq[f(u,m)]
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» Using Monte Carlo sampling, the optimisation problem becomes

1 Nuc

muinEm[f(u,m)] A min — Z F(u,m™).
k=1
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Objective distribution at minimizer

T T T
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—— Stochastic (4 samples)
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Figure: Distribution of the objective value evaluated at minimizers for 8 different
initial guesses.
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Particle confinement for Protons at 250eV
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Figure: Particle losses over time for protons spawned on axis at 250eV and
1000eV for perturbations of configurations obtained from stochastic and
deterministic optimization.
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Example Il: Porous medium flow
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Deterministic control: Injection in a porous medium flow

E VR Y

m = mean of log permeability field

v

State PDE: single phase flow in a porous medium

—V - (exp(m)Vy) = Zuifi(f)

with Dirichlet lateral & Neumann top/bottom BCs

v

Uncertain parameter: log permeability field m

» Controls: u;, mass source at wells; f;, mollified Dirac deltas

v

Objective: J(u,m) == 3|ly(u,m) — yal|*>, ya...target
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Porous medium with random permeability field

> Law of m:
w=N(m,C) (Gaussian measure on Hilbert space L)
» Take covariance operator as square of inverse of Poisson-like
operator:
C=(—kA+al)™? kKa>0
» C is positive, self-adjoint, of trace-class; p well-defined on Lo
(Stuart '10)
» = oc correlation length; the larger «, the smaller the variance

Random draws for k =2 x 1072, a=4
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OUU with quadratic approximation of .J

» Risk-averse optimal control problem (including cost of controls)
min B {J (u,m)} + B Vary{J (u,m)} +~|ul®
» Quadratic approximation to parameter-to-objective map

Jquad(ua m) = J(U, T?L) + (gm(u, T_YL), m — fn>
1

+ i(Hm(u, m)(m —m),m —m)

> gm and H,, are the gradient of J with respect to m
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OUU with quadratic approximation of .J

Observations:
» Expansion does not lead to a quadratic control objective

» However, can derive analytic formulas for the moments of Jqaq in
the infinite-dimensional Hilbert space setting.

These expressions involve:
» Matrix/operator traces

» For PDE-constrained OUU, their approximation requires repeated
forward and adjoint PDE solves
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Risk-averse optimal control with quadratizised objective
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Example Ill: Sparse stochastic optimal control
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Sparse distributed control
with C. Li

Optimal actuator placement problem:
Place (few) electrodes optimal to achieve desired displacement

electrodes piezoelectric materials

- )

4@6@

‘oo o

Approach Ill: Optimal control with L' cost

+ Continous, efficient i [T

solution, (sub-)optimal °5WLJ§L
.

(-) might need several tries HH H
to find desired structure % o5 1 sz 25 3
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Elliptic sparse optimal control
Minimize over (y,u) € H}(Q) x L*(Q):
1 :
min 7/ ly — yal® + a|u|® dz + / |u| dz
yu 2 Jq JQ

subject to Ay = u+ f € Q,
a<wu<ba. e inf)

Numerical solution:
» That's a nonsmooth and inequality-constraint optimization problem.
» However, the problem can be reformulated using Lagrange
multipliers.
» Thus, we can use a (discretized) function-space Newton-type
algorithms for its solution.



“PDE-constrained OUU" by Georg Stadler

Sparsening effect of L!-regularization
Optimal controls for changing £:

optimal control for =0 optimal control for $=0.0005
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Optimal control governed by PDEs

Sparse Control under uncertainty

Let D C R, n < 3 bounded, A : H'(D) — H~'(D) invertible, f,y?
given, a > 0.

1/2
// ly(w yd|2+a|u(w)\2dxdu+[3/ [/\u(w)\Qd,u} dx
y(w)u(w 2 D [¢)

subject to

v

u € Uyg C L3(D). .. control
y €Y C H'(D) state.

Interpretation for placement of
controllers, 3 > 0.

v

v

m = m(w) € H random variable W
over Q, law u, B : H — H™ (D). 0 02 04 06 08 1

v
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Sparse stochastic control under uncertainty

}1/2

min = [ [y~ Pralu)P dedps [ [ [ jue)Pdu] do

y(w)u(w)

subject to
Ay(w) = u(w) + f + Bm(w).

Observations:
» Control u(w) depends on w € (2. .. stochastic optimal control.
» Problems for different w are coupled through sparsity term
> All controls have the same sparsity pattern—place controllers where
u(w) # 0 (independent from w)
» Two stage problem: Decide on controller placement (offline) and
compute optimal control (online).
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Sparse stochastic control under uncertainty

1 ' : 1/2
min 7// |y(w)—yd|2+a|u(w)|2dxdu%ﬁ/ {/ \u(w)\Qdy} dx
y(w)uw) 2 JaJp Jp Lo

subject to
Ay(w) = u(w) + f + Bm(w).

Application:
achie vibrokon

dam pus

» For each earthquake forcing / / = T eartquabe
w € €, control computed in / y / / T fercing

C‘”é)n&wx )

» Place active (e.g.,
piezoelectric) dampers

» Placement optimal for range of buitding

earthquakes

real time
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Sparse stochastic control under uncertainty

‘ 1/2
2 d/L} dx

1 3 3
min f// |y(w)—yd|2+a|u(w)|2dxduﬁ’?/ {/ [u(w)
y(w)u(w) 2 JaJp Jp LJa

subject to
Ay(w) = u(w) + f + Bm(w).

Mathematical structure
» Nondifferentiable L;/Lo-type sparse optimal control problem
» Literature: Borzi, Casas, Clason, Herzog, Ito, Kunisch, S., Pieper,
Rozza, Troltzsch, Vexler, Wachsmuth D, Zuazua, ...
» High-dimensional: physical space (D,n < 3) and random space {2,
possibly infinite-dimensional.
» Literature: Alexanderian, Borzi, Chen, Ghattas, Heinkenschloss,

Kouri, Quarteroni, Ridzal, Rozza, Schulz, Surowiec, Ulbrich M,
Ullmann, Xiu, ...
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Existence, uniqueness and optimality conditions
Notation: ||ulla(z (fg u(w, x)? du)l/2

min_ = [ [ ) =P + afut)P dwdp+5 [ Julo(e)do

a<u(w) <b2

Theorem: This problem has a unique solution u(w), characterized by the
existence of y(w) € Y, p(w) € Y and A(w) such that
Ay—u—f—Bm=0,
A*ﬁ —Yd + g = O)
—p+at+ A+ =0,
x P :
T )) if [|alla(z) # 0, or [Alla(z) < 1if [|ulla(z) =0

p<0ifu=a p>0if u=>bb and pu=0if a <u<b.

- u(w,

Mw,z) =
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Norm reweighting formulation (IRLS)

Main challenges: . L
& Assumptions/limitations:

> All variables defined over
physical and random space,
eg., u=u=u(r,w).

> Neglect bound constraints on u

» Distribution of m is Gaussian,

. . . linearit
» Avoid approximation of random Y

space, try to use Gaussians if
possible

» « > 0 for regularity and model
reduction

Iteratively reweighted least squares (IRLS) algorithm: Classical algorithm;
recent finite-dimensional analysis by Daubechies, DeVore, Fornasier, Giintirk,

Rauhut,...)

Iterates over weight function v that only depends on =
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Norm reweighting formulation

Basic idea: u minimizer of
T o\ 1/2
minQ(u,m)—l—ﬁ/ (HUH?Z(;Lf)-Féz) dx
u(w) JD
iff it minimizes the quadratic problem

manum—&—)’/V ||| (2 ) (1)

u(w)

with
v(z) = ([al§(z) + )2 (2)

This leads to a reweighting algorithm, iterates over v = v(x) only:

1: Initialize 1° : D - R. For k=0,1...
2: Solve (1) with v = v/*.

3: Compute v**1 from (2) and iterate.
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Norm reweighting formulation

Theorem: The iterates ¥ satisfy for a non-increasing sequence *:
» All u* = uF(2,w) are Gaussian
» The costs functionals J(u”, v¥) are monotoneously decreasing
> If ¥ — &> 0, then u* — we strongly in L2(D x Q).
Computing u = u(x,w) is still difficult (due to the high dimension!)

» Compute an upfront low-rank approximation (using a rand-SVD) of
A=* A~ where the truncation depends on « and the error can be
controlled (r basis vectors, 7 = O(100)). Similar to POD /reduced
basis method.

» After this computation, each reweighting step amounts to O(r)
inner products and matrix operations of size r x 7.

Reweighting is still a slow algorithm (sublinear convergence), but we've a
Newton variant of the algorithm that is fast.
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v

v

v

v

Helmholtz equation example

A=—A— k%I, k = 12 ...indefinite Helmholtz operator
Optimization problem is convex
Other data: y4 =0, f=0, a =5 x 107° and B =5 x 1074

Shown below are solution of the Helmholtz equation with boundary
forcing only and trajectories of three different random draws

)

. —4
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Helmholtz equation example

) ‘b) optimal control for ml‘
a

‘c) optimal control for mz‘
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Preconditioned inexact Newton-CG reweighting

101 |5 N
S o104
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...... #Cg: 15 LAY S\ SIS St
10714 [ I \ !
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Comparison of performance of or-IRLS and precond. Newton-CG (NIRLS) for
different numbers of CG iterations per Newton step, n = 128, ¢ = 1077,
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Summary, Discussion, Outlook

Summary

» Optimization under uncertainty
for PDE problem
» Deterministic control:

» Taylor expansion in uncertain
parameter

> Alternatives: MC sampling,
sparse grids, etc

» Stochastic control:

» Sparsification for controller
placement

» Reduction to algorithms over
spatial variable only

» Low rank approximations
necessary

Main references:

F. Wechsung, A. Giuliani, M.
Landreman, A. Cerfon, G. Stadler:
Single-stage gradient-based stellarator
coil design: stochastic optimization,
2021, arXiv:2106.12137

A. Alexanderian, N. Petra, G. Stadler,
O. Ghattas: Mean-variance risk-averse
optimal control of systems governed by
PDEs with random parameter fields
using quadratic approximations, SIUQ,
2017.

C. Li, G. Stadler: Sparse solutions in
optimal control of PDEs with uncertain
parameters: the linear case, SICON,
2020, arXiv:1804.05678
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